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The B;,H1,2~ dianion, first prepared in 1960s the most easily
synthesized, the most stable, the most symmetric, and the best
studied of theclosoB,H.2~ species. Before the 1990s, the
persubstituted derivatives of 1,2~ were limited to B,D1%,
B1:Cli22~, B12Bri2~, and Bl152~.3 Since 1999, Hawthorne and co-
workers have reported the synthesis and isolation of salts of
BioMe 2, Bi(OH)12-, and a variety of By(OR)2~ and
B1,(OCOR) 2 derivatives?

Our interest in highly fluorinated weakly coordinating anions
such as 1-R-CBF;;~ prompted us to reinvestigate the synthesis
and physicochemical properties of the dodecafludosodode-
caborate(2) anion, BF;2~. Although a dianion would not be
expected to be as weakly coordinating as a structurally similar
monoanion, there are situations where a weakly coordinating dianion
might be suitable for a particular chemical t&skA species re-
ported?in 1962 to be B,F;,>~ was later shown to be the undeca-
fluoromonohydroxy species;&1;(OH)?-.32¢ The first successful
synthesis of BF1,?~ was achieved in 1992, when it was reported
that the cesium salt could be prepared in 38% yield by heating
CsBi1,Hi; in supercritical HF at 550C for 5 h8 A preliminary

. ; ; Figure 1. Thermal ellipsoid plot of [CP¥2[B12F12] (50% probability
report of the structure of @By, H,0 was included in that papér. ellipsoids except for hydrogen atoms, which are shown as spheres of

The reported B-F distances are 1.37(21.41(1) A. arbitrary size). The white, light-gray, and dark-gray ellipsoids are carbon,
In this paper, we report a significantly lower-temperature synthe- fluorine, and boron atoms, respectively. Selected distances (A) and angles

sis of KoB1JF12 in 72% recrystallized yield. In initial experiments,  (deg): B1-F1, 1.391(4) A; B2-F2, 1.378(5) A; B3-F3, 1.382(5) A; Bt

20% /N, was added to & 70 °C suspension of ¥B1,H1» in liquid B2, 1-782(6) A; BIB3, 1-762F6) A BLB3, 1%59(6) A, B2 B3,

anhydrous HF (LAHF). After the reaction mixture was stirred at }(gfﬁ?lgﬁgg cl)ée_slc(%g)(:l;%e;8132,01(.)?5639_(8)27(.32-(-:%1,12603(72(()?)

25°C for 72 h, it was found that the major products were;BF  F1...c1-C2, 87.0(1); F1---C1-C8, 93.1(1). B

B1oF122~ (21% based on BH1,27), and a number of dimeric B

spgcies. To minimize the formation of BFand the dime_ric species, The salt KB1,F1, was converted to [CRR[B12F12], [N(n-Bu)]--
which presumably resu_lts from the OX|dat|ve-f:oupI|ng of' one or [B,,Fy], [NH(N-CiHos)s]2[B1oF12], [NH42[B12F12], and LibByoFiz
more BiHi,FZ species X < 3).° an alternative synthetic ap- by metathesis reaction.The [NH(n-CioHze)s]o[B1oF14 salt is
proach was uset. The compound KB.H» was stirred in LAHF noteworthy because, unlike the other salts, it is soluble in aromatic
at 70 °C for 14 h, a procedure known to converi,B;*~ to hydrocarbon solvents. In preliminary work, the reactive salt {Ph
B1,HgF42~ in high yle'ld.8 The reaction mixture was then cooled to [BioF1s] has been used to generate compounds containing the
25 °C and treated with 20%EN, for 72 h [CAUTlONZ both HF reactive cation-like species SiMe-CigHs7)* and AlMe*. Given
and F, are extremely hazardous materials and should only be hat the putative AIMg" cation abstracts a fluorine atom from
handled by trained personnel]. Following workup with water and B(CeFs)4~,12it is significant that B,F12~ is stable in the presence
recrystallization from acetonitrile, 481,F1, was isolated in 72% of AlMe,*.
yield. The compositional purity of the &, anion was deter- Crystals of [CPH|2[B12F17] suitable for X-ray diffractio®® were
mined to_be> 99._5% from a negative-ion electrospray mass spec- grown from CHCly/hexanes. The structure, shown in Figure 1, con-
trum, which eX?'b'ted a grouplngl] of pelaks centereana 178.9 sists of the icosahedral;B,>~ dianion weakly interacting with
(caled for BoFy*, 178.8), and by'B and**F NMR spectra, which  the two CPR* cations via two symmetry-related BFC contacts.
exhibited a single broad resonancedat-17.0 ¢ 0 for external Only three boron atoms and three fluorine atoms are unique. The
BFs-OEt) and an unresolved multlplet (fwhix 170 Hz) E}té B—F distances in the BF1,2~ anion are the same to withit3c
—269.6 ¢ 0 for external CFG) which narrovxl/ed to a single  4q the lower-belt and antipoda-& distances in 1-Et-CBF1,-
resonance (Iwhh= 27 Hz) upon broad-band'B decoupling, and 1-CHPh-CB;F1;~.52° The most important structural feature
respectively: is the F2--C1 distance of 3.087(2) A, which is only 0.08 A shorter

t Colorado State University. Fhan the 3.17 A sum of van der_ Waals _radii for carbon gnd fluor-

* Russian Academy of Sciences. ine1* Furthermore, the F1:C1 distance in [CP§j[B12F17] is far
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Figure 2. Cyclic voltammogram of a 0.064 M ethylene carbonate:dimethyl

carbonate (50:50 v:v) solution of 4B12F1> (AE, = 240 mV, Pt working

and counter electrodes, lithium foil reference electrode, no supporting

electrolyte). The quasi-reversibla 1,12~ Eyp value is 4.9 V. There was

no reduction wave more positive than 0 V. The sharp rise in current at

potentials more positive than 5.5 V is due to solvent oxidation.

longer than the related BFC distances in [CPiip-OMe-GsHy)]-
[BF4] and [CPhp-OMe-GsH.),][BF 4], 2.68 and 2.58 A, respec-
tively.15

The BF--C distances demonstrate thabB >~ is considerably
less basic than BF despite the higher negative charge. To further
probe the applicability of BF1,2~ as a weakly coordinating anion,
we examined its thermal, chemical, and electrochemical stability.
A thermogravimetric analysis of kB;,F;, revealed no mass loss
up to 450°C (heating/cooling at 10C/min). The sample was
recovered unchanged as judged ¥ NMR spectroscopy. In
contrast, crystalline LiPFdecomposes at /.16 None of the salts
we examined appeared to be shock sensitive. A thermogravimetric-
mass spectral analysis of [NH[B1.F1,] revealed no mass loss and
no mass spectral evidence for the evolution ofsNig to 480°C
(heating/cooling at 20C/min). The sample was recovered un-
changed as judged B¥1 andF NMR spectroscopy. In contrast,
crystalline [NHy],[B1,H1,] decomposes at 31TC.17

The By,H12~ anion is known to react with 38% sulfuric aci®l.

In contrast, the lithium salt of BF1,>~ was stable in 98% sulfuric
acid and in 70% nitric acid for at least 24 h. Even more remarkable
is the observation that the,B >~ anion was unchanged after
treatment with aque@3 M KOH for 10 days. Note that the related
fluoroanion 1-H-CB;F;;~ is converted to mono- and dihydroxy
derivativesn 3 M NaOH after only 24 ¥ and GH,B1¢F1o is rapidly
hydrolyzed even in pH 7 waté#.

With regard to redox stability, BF:,>~ did not react with 10
equiv of aqueous Ce (hours) or with metallic sodium in THF (1
day). In contrast, 1-H-CBF;;~ reacts with sodium in THF to form
1,10-H-CB;1F10~, among other products. In a 50:50 (v:v) mixture
of ethylene carbonate and dimethyl carbonateFB?~ was not
reduced 80 V versus Li’® and underwent a quasi-reversible
oxidation at 4.9 V versus [° (ca. 1.9-2.0 V versus NHE), as
shown in Figure 24E, = 240 mV). Under these conditions, 1-Me-
CBy,F11~ was not oxidized prior to the onset of solvent oxidation
(5.5 V versus Li™). For comparison, the BMe;,t /2~ 4ad gnd
CBy11Me P~ 19 Eyp values are 0.4 and 1.6 V (versus NHE),
respectively’® The fact that the oxidation of BF,*~ may be
reversible suggests that salts of the radical monoanjgfy B might

be isolable. Note that the radicalgBle;,t~ 42d.21gnd CB;;Me; 19
have been isolated.
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