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The B12H12
2- dianion, first prepared in 1960,1 is the most easily

synthesized, the most stable, the most symmetric, and the best
studied of thecloso-BnHn

2- species.2 Before the 1990s, the
persubstituted derivatives of B12H12

2- were limited to B12D12
2-,

B12Cl12
2-, B12Br12

2-, and B12I12
2-.3 Since 1999, Hawthorne and co-

workers have reported the synthesis and isolation of salts of
B12Me12

2-, B12(OH)12
2-, and a variety of B12(OR)12

2- and
B12(OCOR)12

2- derivatives.4

Our interest5 in highly fluorinated weakly coordinating anions
such as 1-R-CB11F11

- prompted us to reinvestigate the synthesis
and physicochemical properties of the dodecafluoro-closo-dode-
caborate(2-) anion, B12F12

2-. Although a dianion would not be
expected to be as weakly coordinating as a structurally similar
monoanion, there are situations where a weakly coordinating dianion
might be suitable for a particular chemical task.6,7 A species re-
ported3a in 1962 to be B12F12

2- was later shown to be the undeca-
fluoromonohydroxy species B12F11(OH)2-.3b,c The first successful
synthesis of B12F12

2- was achieved in 1992, when it was reported
that the cesium salt could be prepared in 38% yield by heating
Cs2B12H12 in supercritical HF at 550°C for 5 h.8 A preliminary
report of the structure of Cs2B12F12‚H2O was included in that paper.8

The reported B-F distances are 1.37(1)-1.41(1) Å.
In this paper, we report a significantly lower-temperature synthe-

sis of K2B12F12 in 72% recrystallized yield. In initial experiments,
20% F2/N2 was added to a-70 °C suspension of K2B12H12 in liquid
anhydrous HF (LAHF). After the reaction mixture was stirred at
25 °C for 72 h, it was found that the major products were BF4

-,
B12F12

2- (21% based on B12H12
2-), and a number of dimeric B24

species. To minimize the formation of BF4
- and the dimeric species,

which presumably results from the oxidative-coupling of one or
more B12H12-xFx

2- species (x e 3),9 an alternative synthetic ap-
proach was used.10 The compound K2B12H12 was stirred in LAHF
at 70 °C for 14 h, a procedure known to convert B12H12

2- to
B12H8F4

2- in high yield.8 The reaction mixture was then cooled to
25 °C and treated with 20% F2/N2 for 72 h [CAUTION: both HF
and F2 are extremely hazardous materials and should only be
handled by trained personnel]. Following workup with water and
recrystallization from acetonitrile, K2B12F12 was isolated in 72%
yield. The compositional purity of the B12F12

2- anion was deter-
mined to be>99.5% from a negative-ion electrospray mass spec-
trum, which exhibited a grouping of peaks centered atm/z 178.9
(calcd for B12F12

2-, 178.8), and by11B and19F NMR spectra, which
exhibited a single broad resonance atδ -17.0 (δ 0 for external
BF3‚OEt2) and an unresolved multiplet (fwhh) 170 Hz) atδ
-269.6 (δ 0 for external CFCl3) which narrowed to a single
resonance (fwhh) 27 Hz) upon broad-band11B decoupling,
respectively.11

The salt K2B12F12 was converted to [CPh3]2[B12F12], [N(n-Bu)4]2-
[B12F12], [NH(n-C12H25)3]2[B12F12], [NH4]2[B12F12], and Li2B12F12

by metathesis reactions.10 The [NH(n-C12H25)3]2[B12F12] salt is
noteworthy because, unlike the other salts, it is soluble in aromatic
hydrocarbon solvents. In preliminary work, the reactive salt [CPh3]2-
[B12F12] has been used to generate compounds containing the
reactive cation-like species SiMe2(n-C18H37)+ and AlMe2

+. Given
that the putative AlMe2+ cation abstracts a fluorine atom from
B(C6F5)4

-,12 it is significant that B12F12
2- is stable in the presence

of AlMe2
+.

Crystals of [CPh3]2[B12F12] suitable for X-ray diffraction13 were
grown from CH2Cl2/hexanes. The structure, shown in Figure 1, con-
sists of the icosahedral B12F12

2- dianion weakly interacting with
the two CPh3+ cations via two symmetry-related BF‚‚‚C contacts.
Only three boron atoms and three fluorine atoms are unique. The
B-F distances in the B12F12

2- anion are the same to within(3σ
as the lower-belt and antipodal B-F distances in 1-Et-CB11F11

-

and 1-CH2Ph-CB11F11
-.5a,b The most important structural feature

is the F1‚‚‚C1 distance of 3.087(2) Å, which is only 0.08 Å shorter
than the 3.17 Å sum of van der Waals radii for carbon and fluor-
ine.14 Furthermore, the F1‚‚‚C1 distance in [CPh3]2[B12F12] is far
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Figure 1. Thermal ellipsoid plot of [CPh3]2[B12F12] (50% probability
ellipsoids except for hydrogen atoms, which are shown as spheres of
arbitrary size). The white, light-gray, and dark-gray ellipsoids are carbon,
fluorine, and boron atoms, respectively. Selected distances (Å) and angles
(deg): B1-F1, 1.391(4) Å; B2-F2, 1.378(5) Å; B3-F3, 1.382(5) Å; B1-
B2, 1.785(6) Å; B1-B3′, 1.765(6) Å; B1-B3′′, 1.769(6) Å; B2-B3,
1.775(7) Å; B2-B2′, 1.761(10) Å; B3-B3′, 1.769(6) Å; F1‚‚‚C1, 3.087(2)
Å; B1-F1‚‚‚C1, 139.0(3)°; C2-C1-C2′, 120.0(5)°; C2-C1-C8, 120.0(2)°;
F1‚‚‚C1-C2, 87.0(1)°; F1‚‚‚C1-C8, 93.1(1)°.
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longer than the related BF‚‚‚C distances in [CPh2(p-OMe-C6H4)]-
[BF4] and [CPh(p-OMe-C6H4)2][BF4], 2.68 and 2.58 Å, respec-
tively.15

The BF‚‚‚C distances demonstrate that B12F12
2- is considerably

less basic than BF4- despite the higher negative charge. To further
probe the applicability of B12F12

2- as a weakly coordinating anion,
we examined its thermal, chemical, and electrochemical stability.
A thermogravimetric analysis of Li2B12F12 revealed no mass loss
up to 450 °C (heating/cooling at 10°C/min). The sample was
recovered unchanged as judged by19F NMR spectroscopy. In
contrast, crystalline LiPF6 decomposes at 70°C.16 None of the salts
we examined appeared to be shock sensitive. A thermogravimetric-
mass spectral analysis of [NH4]2[B12F12] revealed no mass loss and
no mass spectral evidence for the evolution of NH3 up to 480°C
(heating/cooling at 20°C/min). The sample was recovered un-
changed as judged by1H and19F NMR spectroscopy. In contrast,
crystalline [NH4]2[B12H12] decomposes at 310°C.17

The B12H12
2- anion is known to react with 38% sulfuric acid.4c

In contrast, the lithium salt of B12F12
2- was stable in 98% sulfuric

acid and in 70% nitric acid for at least 24 h. Even more remarkable
is the observation that the B12F12

2- anion was unchanged after
treatment with aqueous 3 M KOH for 10 days. Note that the related
fluoroanion 1-H-CB11F11

- is converted to mono- and dihydroxy
derivatives in 3 M NaOH after only 24 h5c and C2H2B10F10 is rapidly
hydrolyzed even in pH 7 water.18

With regard to redox stability, B12F12
2- did not react with 10

equiv of aqueous Ce4+ (hours) or with metallic sodium in THF (1
day). In contrast, 1-H-CB11F11

- reacts with sodium in THF to form
1,10-H2-CB11F10

-, among other products. In a 50:50 (v:v) mixture
of ethylene carbonate and dimethyl carbonate, B12F12

2- was not
reduced at 0 V versus Li+/0 and underwent a quasi-reversible
oxidation at 4.9 V versus Li+/0 (ca. 1.9-2.0 V versus NHE), as
shown in Figure 2 (∆Ep ) 240 mV). Under these conditions, 1-Me-
CB11F11

- was not oxidized prior to the onset of solvent oxidation
(5.5 V versus Li+/0). For comparison, the B12Me12

1-/2- 4a,d and
CB11Me12

0/1- 19 E1/2 values are 0.4 and 1.6 V (versus NHE),
respectively.20 The fact that the oxidation of B12F12

2- may be
reversible suggests that salts of the radical monoanion B12F12

- might

be isolable. Note that the radicals B12Me12
1- 4a,d,21and CB11Me12

19

have been isolated.
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Figure 2. Cyclic voltammogram of a 0.064 M ethylene carbonate:dimethyl
carbonate (50:50 v:v) solution of Li2B12F12 (∆Ep ) 240 mV, Pt working
and counter electrodes, lithium foil reference electrode, no supporting
electrolyte). The quasi-reversible B12F12

1-/2- E1/2 value is 4.9 V. There was
no reduction wave more positive than 0 V. The sharp rise in current at
potentials more positive than 5.5 V is due to solvent oxidation.
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